

Selectivity studies in the analytical separation of oligonucleotides using anion exchange chromatography

Bruce Kempf, R. Christopher Manzari, J. Kevin O'Donnell, Ph.D. and Atis Chakrabarti, Ph.D.

Tosoh Bioscience LLC, King of Prussia, PA 19406

- Synthetic oligonucleotides are becoming increasingly popular as biotherapeutic agents.
- When purification moves from analytical to manufacturing scale, having the same bonding chemistry is helpful, since the selectivity is expected to remain the same.
- TSKgel SuperQ-5PW analytical columns have the same backbone chemistry and selectivity as the bulk process scale resins viz. TSKgel SuperQ-5PW and Toyopearl SuperQ-650.
- Here we report a one-step analysis of a 20-mer DNA-based oligonucleotide, using a TSKgel SuperQ-5PW,10 µm, 7.5 mm ID × 7.5 cm column.

- The effect of pH, salt concentration, temperature, and sample load on the selectivity and resolution, particularly in reference to the separation of N-1 and N+1 peaks from the main peak, are discussed.
- Two other columns: one packed with 5 µm hydrophilic non-porous resin particles of which the surface consists of an open access network of multi-layered anion exchange groups (TSKgel DNA-STAT) and the other column packed with 2.5 µm non-porous, high efficiency, hydrophilic polymer beads which are surface modified with a weak anion exchanger (TSKgel DNA-NPR) are used for reference.

To show the usefulness of the TSKgel SuperQ-5PW analytical column in the separation of oligonucleotides, particularly in reference to the fact that the TSKgel SuperQ-5PW bulk resin and the TSKgel SuperQ-5PW analytical column both have the same selectivity.

Characteristics of TSKgel Ion Exchange Columns Used in this Study – Product Attributes

	TSKgel DNA-NPR	TSKgel SuperQ-5PW	TSKgel DNA-STAT
Matrix	hydroxylated methacrylic polymer	polymethacrylate	hydrophilic polymer
Particle size (mean):	2.5 µm	10 µm & 13 µm	5 µm
Pore size (mean):	non-porous	1000 Å	non-porous
Functional group:	proprietary	trimethylamino	quarternary ammonium
Counter ion:	CIO4	CI	CI
pH range:	2-12	2-12	3-10
Capacity (mg BSA/mL):	5 mg	100 mg	
Static binding capacity (mg BSA/g dry gel):			ca. 35 (5 µm)
Small ion capacity:	>0.1 meq/mL	>0.13 meq/mL	270 µeg/g dry gel
рКа:	11.2	12.2	10.5
Hardware:			stainless steel tubing & fittings, PEEK frits

HPLC System: Analyses were carried out using an Agilent-1200 HPLC system running Chemstation (ver B.04.02).

Columns: TSKgel SuperQ-5PW, 10 μm, 7.5 mm ID × 7.5 cm (S0082-84NM) TSKgel DNA STAT, 5 μm, 4.6 mm ID × 10 cm (R0036-502N) TSKgel DNA-NPR, 2.5 μm, 4.6 mm ID × 7.5 cm (R0037-87M)

Sample: Phosphodiester deoxyoligonucleotide (20-mer) EcoRI sequence (Trilink Biotechnology, San Diego, CA): Lot# T34-C01A

- 5' GAA TTC ATC GGT TCA GAG AC 3'
- purchased unpurified.
- the extinction coefficient was 199.9 OD units/µmol
- the molecular weight of the free acid 6140.9 Da
- this sequence was chosen to minimize the amount of secondary structure effects during the purification experiments.
- reconstitution of oligonucleotide: For all of the experiments performed, the crude oligonucleotide was diluted into the equilibration buffer (buffer A) before loading onto the column.
- stock concentration: 26.6 mg/mL, final dilution: (1:100) in mobile phase A
- final concentration: 0.266 mg/mL = 0.266 μg/μL

Mobile phase: TSKgel SuperQ-5PW

- buffer A: 20 mmol/L Tris, pH 9.0
- buffer B: 20 mmol/L Tris, pH 9.0 + 1 mol/L NaCI
- 40-80% B over 30 minutes an optimum gradient found to separate both N+1 and N-1 peaks of oligonucleotide

Mobile phase: TSKgel DNA-STAT

- buffer A: 100 mmol/L Tris, pH 9.0
- buffer B: 100 mmol/L Tris, pH 9.0 + 1 mol/L NaCI
- 20-100% B over 30 minutes an optimum gradient found to separate both N+1 and N-1 peaks of oligonucleotide

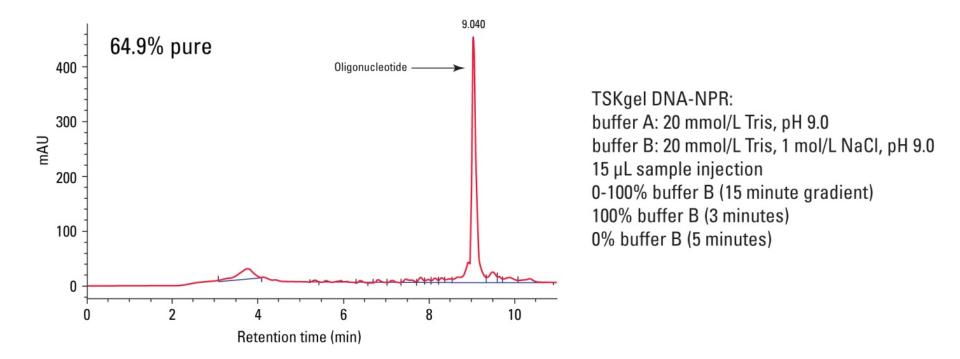
Mobile phase: TSKgel DNA-NPR

- buffer A: 20 mmol/L Tris, pH 9.0
- buffer B: 20 mmol/L Tris, 1 mol/L NaCl, pH 9.0
- 0-100% buffer B (15 minute gradient)
- 100% buffer B (3 minutes)
- 0% buffer B (5 minutes)

Flow rate:

- 0.9 mL/min (TSKgel Super Q-5PW)
- 0.5 mL/min (TSKgel DNA-STAT)
- 0.7 mL/min (TSKgel DNA-NPR)

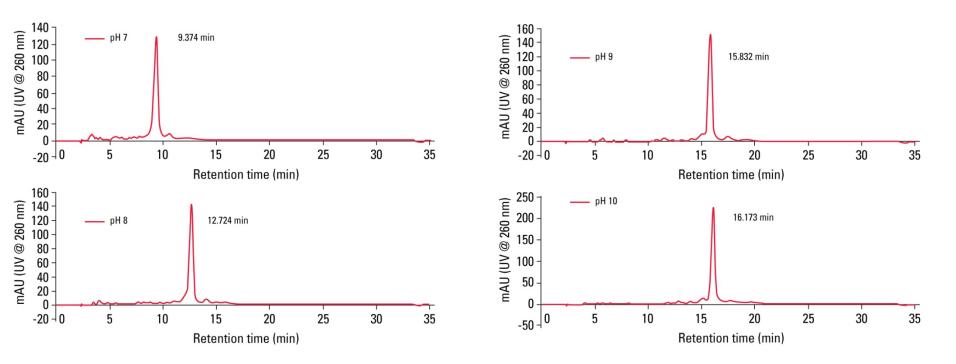
Detection: UV @ 260 nm


Temperature:

- TSKgel Super Q-5PW Ambient & 60 °C
- TSKgel DNA-STAT 60 °C
- TSKgel DNA-NPR 40 °C

Injection vol.:

- 15 μL (TSKgel SuperQ-5PW)
- 10 μL (TSKgel DNA-STAT)
- 15 μL (TSKgel DNA-NPR)


Figure 1: Analysis of Crude Oligonucleotide Using TSKgel DNA-NPR Column

The oligonucleotide was estimated at 64.9% purity by HPLC in lyophilized form.

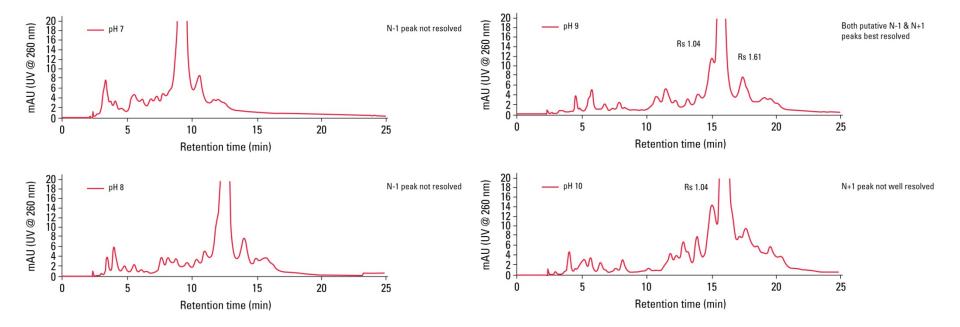
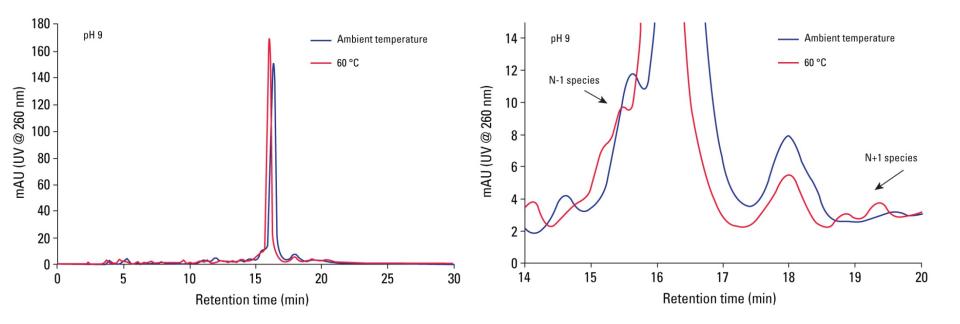
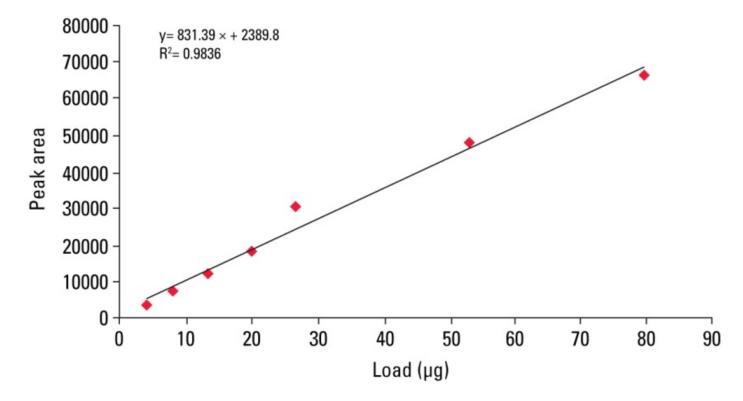

TOSOH BIOSCIENCE LLC

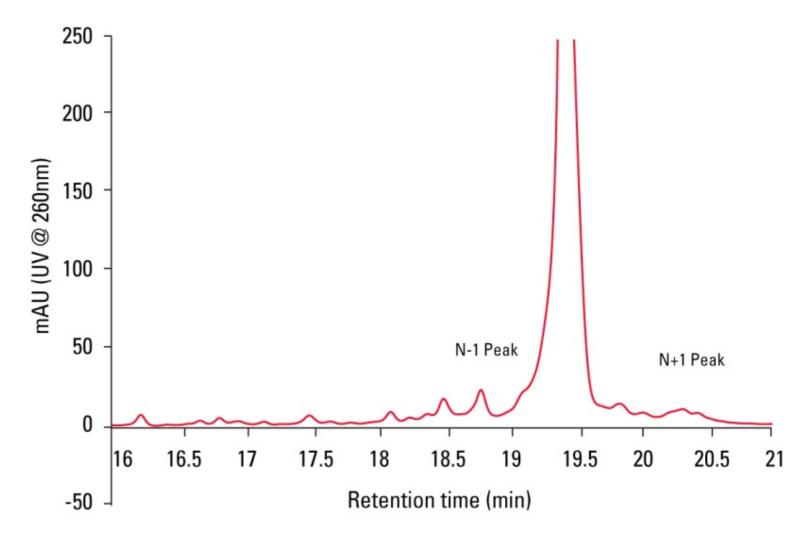
Figure 2: Analysis of Crude Oligonucleotide Using TSKgel SuperQ-5PW Column at Different pH



- The effect of pH on the selectivity and resolution, particularly in reference to the separation of N-1 and N+1 peaks from the main peak, was studied. (Please see the reference 1 for the method of characterization of the N-1 and N+1 peaks by gel electrophoresis analysis of purified oligonucleotides.)
- The best pH value was found to be pH 9.0.



- Effect of temperature on the selectivity and resolution, particularly in reference to the separation of N-1 and N+1 peaks from the main peak, was studied.
- Better resolution could be obtained at 60 °C column temperature compared to the experiment at ambient temperature.
- Both N-1 and N+1 peaks appear to be heterogeneous.



- The peak area analysis was linear within the experimental range of 3.98 µg to 79.68 µg (based on single injection data).
- Higher loadings of crude oligonucleotide within this experimental range did not affect the peak purity percentage.

- The high throughput silica-based reversed phase UHPLC column, TSKgel ODS-140HTP, 2.3 μm, 2.1 mm ID × 5 cm, and one conventional HPLC column, TSKgel ODS-100V, 5 μm, 4.6 mm ID × 15 cm, are being compared for their use in orthogonal analysis of oligonucleotides.
- Preliminary study shows these two columns are useful for the separation of the oligonucleotides.
- Optimization of the best chromatographic conditions are in progress and will be published at a later date.

- TSKgel SuperQ-5PW analytical columns have the same backbone chemistry and selectivity as the TSKgel SuperQ-5PW bulk process scale resins.
- TSKgel SuperQ-5PW could separate impurities containing modified products from the pure product.
- Different chromatographic conditions (pH, salt, and temperature) were tried.
- The best result was obtained at pH 9.0 for the TSKgel SuperQ-5PW column.

- Each of the three main species of oligonucleotide (N-1, N=20 and N+1) were separated under the optimum chromatographic conditions using both TSKgel SuperQ-5PW (20) resin and the TSKgel SuperQ-5PW column.¹
- Selectivity of the TSKgel SuperQ-5PW analytical column was found to be the same as that of the TSKgel SuperQ-5PW (20) resin in the separation of oligonucleotides.
- The study shows that the TSKgel SuperQ-5PW analytical column can be used in the separation of oligonucleotides and the method can be useful for scaling up using TSKgel SuperQ-5PW bulk resin, because of the same selectivity of both.

¹"One-step oligonucleotide purifications using anion exchange chromatography resins" – Phu T. Duong, Shigeru Nakatani and J. Kevin O'Donnell – Poster presentation at ACS, August 2008, Philadelphia, PA